1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright (c) 2015 Jeff Belgum
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the Software without restriction, including without
// limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

extern crate rand;
extern crate num;

use std::collections::HashMap;
use std::hash::Hash;

use num::{Float,
          One,
          PrimInt,
          Zero};

use super::stats_ as stats;

pub fn harmonic_mean<T>(v: &[T]) -> T
    where T: Float
{
    let invert = |x: &T| T::one() / *x;
    let sum_of_inverted = v.iter().map(invert).fold(T::zero(), |acc, elem| acc + elem);
    num::cast::<usize, T>(v.len()).unwrap() / sum_of_inverted
}

pub fn geometric_mean<T>(v: &[T]) -> T
    where T: Float
{
    let product = v.iter().fold(T::one(), |acc, elem| acc * *elem);
    let one_over_len = T::one() / num::cast(v.len()).unwrap();
    product.powf(one_over_len)
}

pub fn quadratic_mean<T>(v: &[T]) -> T
    where T: Float
{
    let square = |x: &T| (*x).powi(2);
    let sum_of_squared = v.iter().map(square).fold(T::zero(), |acc, elem| acc + elem);
    (sum_of_squared / num::cast(v.len()).unwrap()).sqrt()
}

pub fn mode<T>(v: &[T]) -> Option<T>
    where T: Hash + Copy + Eq
{
    match v.len() {
        0 => None,
        1 => Some(v[0]),
        _ => {
            let mut counter = HashMap::new();
            for x in v.iter() {
                let count = counter.entry(x).or_insert(0);
                *count += 1;
            }
            let mut max = -1;
            let mut mode = None;

            for (val, count) in counter.iter() {
                if *count > max {
                    max = *count;
                    mode = Some(**val);
                }
            }
            mode
        }
    }
}

pub fn average_deviation<T>(v: &[T], mean: Option<T>) -> T
    where T: Float
{
    let mean = mean.unwrap_or_else(|| stats::mean(v));
    let dev = v.iter().map(|&x| (x-mean).abs()).fold(T::zero(), |acc, elem| acc + elem);
    dev / num::cast(v.len()).unwrap()

}

pub fn pearson_skewness<T>(mean: T, mode: T, stdev: T) -> T
    where T: Float
{
    (mean - mode) / stdev
}

pub fn skewness<T>(v: &[T], mean: Option<T>, pstdev: Option<T>) -> T
    where T: Float
{
    let m = stats::std_moment(v, stats::Degree::Three, mean, pstdev);
    let n = num::cast(v.len()).unwrap();
    let skew = m / n;
    let k = ( n * ( n - T::one())).sqrt()/( n - num::cast(2).unwrap());
    skew * k
}

pub fn pskewness<T>(v: &[T], mean: Option<T>, pstdev: Option<T>) -> T
    where T: Float
{
    let m = stats::std_moment(v, stats::Degree::Three, mean, pstdev);
    m / num::cast(v.len()).unwrap()
}

pub fn kurtosis<T>(v: &[T], mean: Option<T>, pstdev: Option<T>) -> T
    where T: Float
{
    let two = num::cast::<f32, T>(2.0).unwrap();
    let three = num::cast::<f32, T>(3.0).unwrap();

    let m = stats::std_moment(v, stats::Degree::Four, mean, pstdev);
    let n = num::cast(v.len()).unwrap();
    let q = (n - T::one())/((n-two)*(n-three));
    let gamma2 = m / n;
    let kurt = q * (( ( n + T::one() ) * gamma2) - ( (n-T::one()) * three ));
    kurt
}

pub fn pkurtosis<T>(v: &[T], mean: Option<T>, pstdev: Option<T>) -> T
    where T: Float
{
    let m = stats::std_moment(v, stats::Degree::Four, mean, pstdev);
    m / num::cast(v.len()).unwrap() - num::cast(3).unwrap()
}

pub fn standard_error_mean<T>(stdev: T, sample_size: T, population_size: Option<T>) -> T
    where T: Float
{
    let mut err = stdev / sample_size.sqrt();
    if let Some(p) = population_size {
        err = err * ((p - sample_size) / (p - T::one())).sqrt()
    }
    err

}

pub fn standard_error_skewness<T, U>(sample_size: T) -> U
    where T: PrimInt, U: Float
{
    (num::cast::<f32,U>(6.0).unwrap() / num::cast(sample_size).unwrap()).sqrt()
}

pub fn standard_error_kurtosis<T, U>(sample_size: T) -> U
    where T: PrimInt, U: Float
{
    (num::cast::<f32,U>(24.0).unwrap() / num::cast(sample_size).unwrap()).sqrt()
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_harmonic_mean() {
        let vec = vec![0.25, 0.5, 1.0, 1.0];
        assert_eq!(harmonic_mean(&vec), 0.5);
        let vec = vec![0.5, 0.5, 0.5];
        assert_eq!(harmonic_mean(&vec), 0.5);
        let vec = vec![1.0,2.0,4.0];
        assert_eq!(harmonic_mean(&vec), 12.0/7.0);
    }
    #[test]
    fn test_geometric_mean() {
        let vec = vec![1.0, 2.0, 6.125, 12.25];
        assert_eq!(geometric_mean(&vec), 3.5);
    }
    #[test]
    fn test_quadratic_mean() {
        let vec = vec![-3.0, -2.0, 0.0, 2.0, 3.0];
        assert_eq!(quadratic_mean(&vec), 2.280350850198276);
    }
    #[test]
    fn test_mode() {
        let vec = vec![2,4,3,5,4,6,1,1,6,4,0,0];
        assert_eq!(mode(&vec), Some(4));
        let vec = vec![1];
        assert_eq!(mode(&vec), Some(1));
    }
    #[test]
    fn test_average_deviation() {
        let vec = vec![2.0, 2.25, 2.5, 2.5, 3.25];
        assert_eq!(average_deviation(&vec, None), 0.3);
        assert_eq!(average_deviation(&vec, Some(2.75)), 0.45);
    }
    #[test]
    fn test_pearson_skewness() {
        assert_eq!(pearson_skewness(2.5, 2.25, 2.5), 0.1);
        assert_eq!(pearson_skewness(2.5, 5.75, 0.5), -6.5);
    }
    #[test]
    fn test_skewness() {
        let vec = vec![1.25, 1.5, 1.5, 1.75, 1.75, 2.5, 2.75, 4.5];
        assert_eq!(skewness(&vec, None, None), 1.7146101353987853);
        let vec = vec![1.25, 1.5, 1.5, 1.75, 1.75, 2.5, 2.75, 4.5];
        assert_eq!(skewness(&vec, Some(2.25), Some(1.0)), 1.4713288161532945);
    }
    #[test]
    fn test_pskewness() {
        let vec = vec![1.25, 1.5, 1.5, 1.75, 1.75, 2.5, 2.75, 4.5];
        assert_eq!(pskewness(&vec, None, None), 1.3747465025469285);
    }
    #[test]
    fn test_kurtosis() {
        let vec = vec![1.25, 1.5, 1.5, 1.75, 1.75, 2.5, 2.75, 4.5];
        assert_eq!(kurtosis(&vec, None, None), 3.036788927335642);
        let vec = vec![1.25, 1.5, 1.5, 1.75, 1.75, 2.5, 2.75, 4.5];
        assert_eq!(kurtosis(&vec, Some(2.25), Some(1.0)), 2.3064453125);
    }
    #[test]
    fn test_pkurtosis() {
        let vec = vec![1.25, 1.5, 1.5, 1.75, 1.75, 2.5, 2.75, 4.5];
        assert_eq!(pkurtosis(&vec, None, None), 0.7794232987312579);
    }
    #[test]
    fn test_standard_error_mean() {
        assert_eq!(standard_error_mean(2.0, 16.0, None), 0.5);
    }
    #[test]
    fn test_standard_error_skewness() {
        assert_eq!(standard_error_skewness::<i32, f32>(15), 0.63245553203);
    }
    #[test]
    fn test_standard_error_kurtosis() {
        assert_eq!(standard_error_kurtosis::<i32, f32>(15), 1.2649110640);
    }
}